-
unclassified . D"c
SECURITY CLASSIFICATION OF THIS PAGE F”_E COPY
’ REPORT DOCUMENTATION PAGE Form Approved

ta. REPORT SECURITY, CLI‘jSIFICATION

1b. RESTRICTIVE MARKINGS

2a SFCURITY Cl ASSIFICATION AINTUADITY

AD-A217 682 =

702

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
The Board of Trustees of the

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

University of Illinois AFOSR/NM

6c. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and ZIP Code)
506 South Wright Street AFOSR/NM

Urbana, IL 61801 Bldg. 410

Bolling AFB, DC 20332-6448

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFOSR NM APOBR- F49620-86-C-0136
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
AFOSR/NM PROGRAM PROJECT TASK WORK UNIT
Bldg. 410 ELEMENT NO.] NO. NO ACCESSION NO.
Bolling AFB, DC 20332-6448 61103D Y Py A5
11. TITLE (Include Security Classification)
Supercomputer Environments
12. PERSONAL AUTHOR(S)
K
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Final FROM 10’86 TO__10/89 January 9, 1990 33

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD “ GROUP SUB-GROUP

o

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report provides a detailed summary of the Faust Project, a three-year program funded
by the Air Force Office of Scientific Research targeted at the construction of an
integrated parallel programming environment for the dévelopment of scientific and

engineering applications.

i B

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SEQURITY CLASSIFICATION .
& uncrassiriepunumiTeD [SAME AS RPT. (] DTIC USERS NC AsS, ,“/
22a. NAME OF RESPONSIBLE INDIVIDUAL 22 TEL HONE (Include Area Code) | 22c. OFFICE SYMBOL
Abraham Waksman ‘)‘ - 3‘027 NM
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Center for
Supercomputing Research and Development

Final Project Report
Contract No. F49620-86-C-0136

Supercomputer Environments

Vincent A. Guarna, Jr.

January 9, 1990

University of Illinois at Urbana—Champaign
104 S. Wright Street
Urbana, Illinois 61801

Copyright © 1990, Board of Trustees of the University of Illinois

REVIEW OF THE FAUST PROJECT

‘The objective of the Faust project is to provide users of high-performance parallel
and vector machines with an environment thi: makes the task of programming easier.
Included in this environment are tools that arc .ised in the process of developing, testing,
tuning, and using scientific and engineering programs. These include- many.tools that
are specific to the problem of parallel programming such as restructuring compilers,
parallel debuggers, and parallel program performance evaluation tools, as well as tools
that are useful in any program development environment such as text editors, program
management assistants, on-line documentation systems, and graphic visualization tools.

Philosophies

Developers of applications have varying levels of experience with respect to super-
computer usage. At one end of the spectrum is the ‘‘machine expert’”” who knows the
intricacies of parallel and vector architectures and their effects on program performance
and integrity. At the other end of the spectrnm is the “applications expert” who has a
background more focused on a specific scientiiic or engineering discipline. Both users
have problems using high-performance architcctures for the development of applica-
tions. The applications expert develops sequentixl programs that execute slowly, con-
suming excessive machine time. This user can bencfit by the automatic parallelization
and optimization tools supported by Faust. The machine expert is capable of achieving
better performance but requires significant personal time to acquire the necessary data
to debug and tune applications. This person can use the detailed instrumentation, visu-
alization, and query tools supported by Faust to shorten the task of understanding pro-
gram behavior. Faust’s primary focus is to provide the development setting to support
the development, debugging, and optimization tools for all users along this experience
continuum.

Goals

The Faust project has been directed toward three major goals. The first goal is the
design and implementation of a set of new tools aimed specifically at the problem of
developing efficient scientific programs for supercomputers. This includes the creation of
new interactive compilation tools as well as new facilities for debugging and performance
evaluation in a parallel execution environment.

The second goal is portability. Although the Faust environment assumes the
existence of a bitmapped workstation running Unix as a basic platform, Faust is
expected to run on a variety of hardware. In order to accomplish this goal, all user
interface libraries have been layered on top of the X Window System developed at MIT
[ScGN88|. Additionally, all file onerations have been designed to work on a single name
space style of file system such as = ~.

The third goal is integratioi.. i+ .ddition to the development of new tools, Faust is 5 40a
intended to cooperate with existii, program development tools such as system text ,,ox

Malw

’ 'l il
[-

editors and compilers without modification of those tools. A major focus for the Faust
project is the definition of an architecture that supports this cooperation.

Integration

The concept of integration within the Faust environment is that of loosely—coupled,
stand-alone components that are able to communicate through a shared collection of
data called the Project Data Base. The integration supported by this data base is evi-
dent at two levels. At the lowest level, connection of tools to the data base allows the
Faust environment to do many operations automatically that would otherwise be done
manually by the user. In this context, integration provides a convenience to the user,
reducing the number of explicit steps required to perform certain operations. An exam-
ple of a tool that can benefit from this sort of integration is the Unix GPROF tool.
GPROF is a performance profiling system that accomplishes its task by creating execut-
able programs that leave a data file, gmon.out, in the directory from which the user
runs the program. If the user wishes to execute the program multiple times, the data
files must be saved and cataloged for later reference. Furthermore, if different execu-
tions of the program correspond to different versions of the program, the user’s data file
tracking job is more difficult. However, in this example, low-level integration can be
introduced by associating the data files with the appropriate executables. In this con-
text, the project data base provides the ‘‘glue’’ necessary to relieve the user of the bur-
den of directory and file management. One aspe«: of the Faust philosophy is to provide
exactly this type of integration.

A higher level of integration can be achieved when new tools are created. At this
level, the overall functionality of two tools used in concert is greater than the functional-
ity of the individual tools used in a stand-alone environment. At this level of integra-
tion, the goal is not simply user convenience but newer, more powerful functions that
cannot be provided by either tool alone.

An example of this higher level of integration is the integrated performance experi-
mentation tool. Using this tool, the user is able to request the collection of specific
pieces of performance data. Figure 2 shows a sample interactive session where the user
is requesting a report of the number of megaflops achieved during the execution of a par-
ticular Fortran DO loop. Note the “context-specific’” menu that appeared when the DO
keyword was clicked on. The high-level integration is at once apparent. From inside
one tool, a simple mouse-based text editor, source language-specific behavior was
achievable through the sharing of common data. In this case, row/column information
known by the text tool was mapped into a pari:.ul~i syntactic construct by internal
data structures generated by the Faust compilers.

To satisfy this particular request, two pieces of information are needed. First, a
measure of the time elapsed during execution of the loop is needed. The second com-
ponent is a count of the number of floating—point operations performed in the loop.
Once this selection is made by the user, the experimentation tool issues requests to the
program instrumentation tool to insert the ‘‘start timer” and ‘“‘end timer' requests

/37/nomes/gaucs faust_test/gauss/forward, f

-ubrouuae forward(N) Rt
inteager
common a3(512.512), b(%512), x(512)
integer i.J.T.C
real temp
do 10 § =1. N-i
- 2 trace... oo QIAAM
DeReLE * a(r.1)/a(4.1)
meoa_flop, HW-"TCI VAN]
Ltime ar.c) = a(r,c) - temp » a(t.c)
30 continue
b(r) = b(r) - tempeb(y)
[~ 320 continue
10 continue
end

Figure 2. Loop selection automatically handled by the Text Manager

around the loop. The experimentation tool then queries the data base to determine if
the number of floating-point operations can be determined statically (i.e., if the number
of loop iterations is ascertainable at compile time). If so, no further modifications to the
program (by Faust) are necessary. If not, the program must be additionally modified to
count the number of iterations executed at run time.

The above sequence of steps are all examples of high-level integration. The
automatic measurement of a particular program characteristic (megaflop rating for a
loop) is accomplished through the cooperation of three Faust components, the text edi-
tor, the Fortran compiler, and the program instrumentation tool. As designed, none of
these tools explicitly measure megaflops in user-specified loops. Moreover, none of these
tools is capable of measuring megaflops in user-specified loops when operated individu-
ally. It is only by the cooperation of these tools through shared data that these higher
level functions can be achieved. Creating the infrastructure for these high-level interac-
tions is another focus for the integration goals of Faust.

Phase I Accomplishments
The first three years of Faust (Phase I) have been a period of foundation building,

filling in many of the components needed to support the programming model presented

in Figure 1. Many low-level tools were developed for the aid of the environment tool

builder. Using these tools, some high-level tools were constructed. Below is a concise

list of the accomplishments that will be completed by the end of the Faust funding

period (September 30, 1989). They are organized into the five classes of problem spaces

depicted in Figure 1. A more detailed discussion of each area follows:

PHYSICAL PROBLEM DOMAIN (Phase 1)

° PDE-tutor prototype developed

° Parallel ray-tracing, image generation developed.

° Matrix visualization tools developed

SOURCE CODE DOMAIN (Phase 2)

° Text handling tool developed.

° Abstract graph handling and display tool developed.

° Hierarchical program browser (graphical/textual) developed.

° Numerical subroutine library expert developed. Both conversation and graphical
versions of on-line help systems have be prototyped to aid users in locating

numerical library kernels for the Cedar system.

INTERNAL PROGRAM DOMAIN (Phase 3)

° SIGMA editor developed, supporting interactive restructuring and program
queries for Cedar Fortran and Parallel C.

° Automatic error-analysis package integrated into Cedar Fortran compiler.
° Restructuring Lisp compiler developed (PARCEL).
PROGRAM DATA DOMAIN (Phase 4)

) Execution Analysis SYstem (EASY) developed. This i. a facility for the
automatic location of nondeterminism in parallel programs.

° Prototype of a parallel breakpoint debugger (N\DBX) developed. Also developed

was a graphical front end for the debugger.
PHYSICAL MACHINE DOMAIN (Phase 5)

° Integrated performance cxperimentation environment developed. This tool will
be supported in two forms. One, based on GPROF, will be a portable tool used
for analyzing overall program performance at the application or subroutine level.
The other, based on performance tools developed at CSRD will deliver more accu-
rate profiling results as well as delivering new information to the user such as
parallelism behavior and megaflop ratings for arbitrary sections of code.

) SIGMA editor extended to support queries for prediction of cache utilization and
program performance.

Architecture

The organization of the Faust environment is shown in Figure 3. At the highest
level in the system are the Faust user-level tools. These are the utility programs used
by programmers to aid in the development of scientific programs. Included at this level
are the traditional Unix program development tools such as system text editors and com-
pilers, as well as Faust parallel programming aids such as the performance evaluation
facility and interactive compilation tools. The lines between boxes indicate paths of
communication between system elements.

Programmer tools access the file system through one of two paths. One is a direct
path, involving no interaction with Faust facilities. In this model, programmer tools
may be thought of as being integrated by virtue of their communication through side
effects in the file system.

An additional path to the file system is supported through the use of the Project
Manager (PM). The PM is a hierarchical data base manager used by Faust to create
and manipulate the project database in a network-transparent manner.

For the user interface, Faust supports a layer of building blocks that is available to
the Faust tool builder. The building blocks comprise interface utilities to do basic
input—output operations with X Windows. In addition, the layer contains the mechanics
to maintain a hierarchical program abstraction. This abstraction allows the user to view
application programs in varying levels of detail, from a textual view of source code to a
high-level graphical view of function and task relationships.

Low-level Tools

In order to unify the development of user tools for Faust, a set of low-level *‘build-
ing block” components were constructed to manage various abstract entities. These
low-level tools manage textual and graphical objects for higher level tools to promote
user interface and functional consistency as well as code reuse among tools.

Faust Tools (edit, compile, debug, performance eval)

A I\
Project
Manager
Y Y
A X
- / ¥ Building Blocks

IM GMB | TM

Project
Database

NFS

X
Windows

Figure 3. Architecture of the Faust environment

Graph Manager/Browser

Logically, GMB comprises two major components; the Graph Manager and the
Graph Browser {JaGu89]. The Graph Manager is an abstract data type for graphs, pro-
viding full-featured support for graph manipulations including node addition/deletion
and arc addition/deletion, as well as functions for attaching and retrieving an arbitrary
number of user-definable data fields to and from each node and arc. The Graph
Manager is meant to be strictly abstract in nature and accomplishes the sole function of
manipulating graph data structures for application tasks without regard to associating
screen representations with the data structures.

The Project Manager makes extensive use of the Graph Manager to store its data.
Each proje.: .« ultimately represented as a graph. Objects of the projects and relations
between prc . .13 are represented as graph nodes and arcs, respectively.

The Gr ... Browser is the user-interface of the graph tool. The Graph Browser's
function is ©+ use data structures constructed by the Graph Manager and perform a

series of screen—mapping operations under application control. Attributes such as graph
layout can be computed by either the application or the Graph Browser. The Graph
Browser also supports the facility for mapping abstract graph node data into screen
attributes such as color and visibility.

Development of a graph tool kit was justified for several reasons. Developers of
packages such as compilers, debuggers, and performance tools frequently build internal
data structures that are graph— or tree-like in nature. Additionally, by integrating a
browsing tool with the graph tool, additional flexibility can be brought to the develop-
ment environment. One side effect of having the integrated browser tool is that internal
data structures can easily be presented to the user interface.

An emphasis of the Graph Browser was the realization of graph views and graph
animation. The idea behind graph views is similar to the idea behind database views;
the graph view contains only the subgraph of the original graph that is of immediate
concern to the application or end—user. Once a graph view has been specified and is
being displayed, the Graph Browser supports efficient animation of the graph. Anima-
tion of the graph includes changing node shapes, changing node and arc colors, changing
node and arc text, and making arcs and nodes appear and disappear.

Another emphasis of the Graph Browser was automatic graph layout. Graph lay-
outs that are hierarchical with a minimum number of edge crossings have been found to
be most acceptable by end-users. However, the determination of optimal layouts with
respect to these requirements have been shown to be NP-complete. [TiNe87] The Graph
Browser uses its own set of layout heuristics that yield a polynomial-time layout algo-
rithm.

Many efforts related to graph manipulation and display have been published in the
last several years. Some of the work focuses on special types of graphs, such as trees or
planar graphs. Other work, such as VLSI routing, is concerned with layouts of arbitrary
graphs, but lacks the interactive flavor of GMB. For comparison, three recent research
projects are examined that share GMB’s focus for handling arbitrary graphs in an
interactive framework.

GRAB, a graph browser implemented by Rowe, et al [RDMMS87], concentrates on
graph layout. The heuristics used are complex, consisting of multiple phases where at
least one of the phases is iterative.

Tichy and Newbery implemented a prototype system called kb—edit (knowledge—
based editor), which lead to the devolpment of a successor system, EDGE [TiNe87|.
EDGE recognizes that very large graphs may need to be abstracted to be of use to an
end-user. To this end, EDGE allows for the formation of node groups, and uses a simu-
lation of three dimensions in two dimensions by stacking nodes on the display like a
skewed deck of cards.

The ISI Grapher, a tool implemented by Robins 'Robi87, Robi88], uses a linear-
time graph layout algorithm. The ISI Grapher also concentrates on portability, versatil-
ity, and extensibility. The ISI Grapher has a potenti.l shortcoming for displaying arbi-
trary graphs in that it breaks cycles by splitting a node into two nodes. This allows

arbitrary graphs to be displayed as trees and results in a linear time algorithm. How-
ever, splitting one node into two may be counter intuitive to an end—user who is expect-
ing a natural one-to-one correspondence betwen the nodes and the underlying objects
they represent. In defense of the ISI Grapher. however, empirical evidence with GMB
has shown that many graphs tend to be tree-tike.

Animation of a graph is a useful feature. One of the primary goals of GMB was to
support animated graphs. For animation, GMB supports changing colors, shapes of
nodes, and visibility. Kb-edit, the ISI Grapher, and GRAB are primarily for static
displays and support animation only at a primitive level. Kb-edit for example, supports
greying of nodes for its animation.

Another unique feature of GMB is the support for multiple views where a view con-
tains a subgraph of its parent graph. The ISI Grapher supports the displaying of only a
subgraph of a specified graph, but does not support multiple simultaneous subgraphs.
Neither kb—edit, EDGE, nor Grab mention any similar functionality. If a graph is used
as an abstraction mechanism, then views are important to allow complex graphs to be
considered from different abstract points of view.

Text Manager

The Faust low-level tools include the Text Manager, a collection of routines for
maintaining text objects in the system. The text handling subsystem provides an
abstract data type for textual objects, including edit, search, and display functions. The
rationale for including such a package in the Faust support layer is to promote reusabil-
ity of basic functions to reduce the development time of higher—level tools.

In addition to supporting basic text operations, the Text Manager is coupled with
the other support blocks to provide two higher-level functions. One is the graphical
program browser. By using information stored in the project data base, the Text
Manager can support a ‘‘zoom/unzoom” facility that allows the user to choose the level
of detail at which to view the application. Selecting the unzoom function from a text
manager window causes the creation of a subroutine call graph window to be displayed
on the user’s workstation. Similarly, the call graph window supports a zoom operation.
The selection of a function or subroutine (by *clicking’) results in the creation of a Text
Manager window containing the source for the associated function. Figure 4 shows an
example screen displaying the graphical and textual representations of an application
program.

The other high-level facility support by 'he Text Manager is a source annotation
facility. Source annotations are a way in which Faust tools can allow the user to place
tool-specific ‘‘markers’ in program source text. These markers are maintained in an
external file (an annotation file) associated with the appropriate source file by the Pro-
ject Manager.

An example of the source annotation facility is shown in Figure 2. The arrows in
the left margin show that some annotations have been inserted by the user. In this case,

ovogran &
CORmOn

'a(313:312). SND). =N
resl 8. b. &

N'Tl?. 13} 1) uwn
ifijarect) o0, call ne (1.0rg)

N = anteisre

(N g.312) then
sLon

ortsf

cali senarreu(M)
”-1[ovaivate(N)
v

S/ QauShs EVILUSLE. Y,

brout ing svaluate (i}
inteser M
conman 2(312.312). (). x(ND)

¢all forusrdtM)
A(N=1)} = DIN~1}/a(M-1.N=1)
call Backuard(N}

L3

Figure 4. Graphical and textual program browsing

the annotations are specific to the performance evaluation system and represent direc-
tives to the instrumentation package for monitoring options to be executed.

The pop-up menu shows the options that are available; this menu is configurable
and dynamic. The particular menu that appears is a function of the lexical structure
that is selected by the user with the mouse. To achieve this level of ‘‘understanding,”
the Text Manager uses the program data base to relate lexical tokens to semantic con-
structs. Once the construct is recognized, the annotation configuration file is consulted
to select the appropriate menu for that construct. In the case of the performance tool,
menus are defined for subroutine name selection, source line selection, loop selection, and
variable selection. Once a selection is complete, it is recorded in the annotation file and
later retrieved by the performarce tools.

User Tools

10

The following sections describe currently supported tools that were developed as
part of the first phase of the Faust Project.

Project Manager

The focal point for integration with the Faust environment is a hierarchical data-
base system called the Project Manager (PM). The PM maintains a network-wide col-
lection of constituent ‘‘objects’’ that are associated with an application program.

All user application work in the Faust environment is done in the context of pro-
jects. From a user perspective, a project roughly corresponds to an executable program,
although the user has the ability to define a project's exact characteristics. The project
is the unifying theme in the Faust architecture. It serves as the focal point for all tool
interactions. Faust achieves its functional integration through operations on common
datasets maintained in each project.

Several references concur on the use of a common object-based architecture for
environment building [MuKI88, KaFc87]. Other research efforts have also recognized the
utility of graphical representations to convey the structure of a project [AmODSS,
RDMMS87|. The Project Manager’s primary distinction from other object database
efforts is its handling of dependences and inconsistencies. Particuarly prominent is the
PM’s capability to resolve inconsistencies in parallel. This is especially useful in a
scientific supercomputing environment where compilations, linkages, or user-level experi-
ments may need to be carried out on different nodes in a heterogeneous environment.
For homogeneous environments, the parallelization capability of the Project Manager is
useful for reducing turnaround times for user work. Apollo Computer’s DSEE product
(Domain Software Engineering Environment [Apol85|) offers similar parallelization capa-
bilities for program compilations; however, the Project Manager’s object management
paradigm is more generalized for arbitrary computation chores.

Database Components

There are several types of files that are routinely maintained by the PM for each
Faust application. These include:

o Ezecutable files — the ultimate target object in which the end-user is interested.
o Source files (.f, .c) - original program text written in Fortran or C.
° Object files (.0) — intermediate files generated by system compilers in the process

of producing an executable program.

° Assembler files (.s) — assembly language versions of the source files produced by
the system compilers. These are specifically created by the Project Manager for
reference by the performance prediction tools.

11

° Dependence files (.dep) — symbol table and data dependence information collected

by Faust compilers for reference by the query/interactive restructuring environ-
ment (SIGMA).

° Program graph — static call graph data used by the Faust graphical program
browser.
° Ezecution trace files — collected at run time as a result of the user’s application

being instrumented by the performance evaluation tools. These trace files are
referenced by performance analysis and visualization tools.

° Annotation files — contain detailed information about modifications applied to
application programs on behalf of Faust tools. For example, an annotation file
exists for each execution trace that is collected by the performance tools. The
annotation file contains the detailed descriptions of the performance data col-
lected for the associated trace as well as the purpose for doing the collection.

Figure 5 depicts a small project, written in C, with the hierarchical organization
maintained by the PM.

A Graphical Makefile Tool

One program development tool that was constructed with the Faust building-block
layer is a graphical version of the Unix ‘“Make’ utility [Feld84]. The graphical makefile
editor allows the user to specify program dependences by graphically creating a directed
graph (see Figure 6). At the root of the graph (tree) is the executable object to be
created. The next level of the tree consists of all of the object files required to generate
the executable. Each object file serves as the root of a subtree which defines all files
necessary to generate it.

The graphical makefile editor highlights those executable files which are out—of-
date or inconsistent to remind the user which recompilations need to be performed. The
user may specify certain subtrees to be recompiled or allow the system to perform all
necessary build operations. In Figure 6, the nodes corresponding to inconsistent objects
are highlighted with a box around or through the object name.

The rationale for developing the graphical makefile editor is twofold. First, it
serves as a nice demonstration of the interface utilities developed for Faust. Second, the
nature of traditional makefiles is perceived as tedious, making the investigation of a
graphical approach attractive. Although building makefiles through the graphical edit-
ing tool requires as much (if not more) effort than standard makefiles, the final product
appears to be more intuitive, giving users a better understanding of the relationships in
the program. Additionally, the graphical representation provides a convenient method
for inspecting the state of the application with respcct to object file consistencies.

13

evaluste.o

ovaluste.f

tgoume.l

Figure 6. Graphical makefile editor

The SIGMA Editor

Much of what programmers do when they are trying to optimize a parallel program
involves asking, and then answering, questions about the structure of the code. These
questions can be simple such as “Why is this loop not executing in parallel?”’ to more
complex questions such as “What is the impact of the machine memory hierarchy on the
execution of this segment of code?’’ Just as interactive source code debuggers are essen-
tial in making software work correctly, special interactive tools are essential in answering
parallel performance tuning questions.

Our approach to this task has been to try to merge the knowledge extracted from a
parallelizing compiler with the knowledge collected by a program editor. The objective
is a special family of programming tools that act as front—ends to a knowledge base of
information about the target application. Our system is organized into six major com-
ponents:

14

1. A parser for a parallel extension of FORTRAN (Cedar FORTRAN from CSRD in
Urbana) with many 8X extensions.

2. A parser for a subset of C++ with vector and concurrency extensions.

A data dependence analyzer that builds a data dependence and control flow graph
from the output of either parser. (Much of the dependence analysis for C programs
was based on work done by Vince Guarna at CSRD [Guar87a, Guar88aj.)

4, A database that resolves global flow information between the data dependence
graphs generated from seperately compiled source modules.

5. A special library of parallelizing program transformations to aid the user in making
the correct changes to the source code.

6. An interactive tool that provides the user an interface to the rest of the system.

Other research projects in universities and industry have also produced tools with
similar goals. For example, the work of Bose at IBM on the EAVE system [Bose88] is
based on the idea of building an interactive expert system for vectorization for the IBM
3090VF. EAVE incorporates heuristic rules for transforming loops into vector form and
is based on techniques similar to our work on implementing an expert system back—end
to the SIGMA system [Wang88]. The idea of an interactive global dependence database
was introduced by Kennedy, Allen, Baumgartner and Porterfield in the PTOOL system
[ABKP86]. FORGE from Pacific Sierra Research is a commercial package that interac-
tively guides the user through a session with their vectorizer/parallelizer VAST. More
recently, XYZ at Georgia Tech has developed a tool with more user-directed restructur-
ing than VAST that is similar to some of the features in Sigma. The key difference
between Sigma and the others is that it is designed around the concept of a multiwindow
text editor as a front—end for a database of dependence and object code information.

To illustrate the ideas involved and how the system is used, we will list a few simple
examples designed to show the nature of the information stored into the database by the

compiler. These ideas are illustrated by the examples in the call to the subroutine Sub1
in the loop below:

real A (100, 200), B(100, 256)
do i =1, n
do j = 1, m
call Subl(i,j.A,B,C,m,n)
enddo
enddo

From the perspective of parallelism, the programmer is most interested in asking ques-
tions like:

e Can the outer loop be executed in parallel? If not, why?

e Can the inner loop be paralleliz: .’

e Can the loops be interchanged?

The answers to these questions depend on the way the subroutine Subl (and the
subroutines that it calls) uses and modifies its parameters and other external variables.
The database also maintains this interprocedural analysis information, so more specific
questions can be put to the system about the way variable values are used and modified.

For example:

e For a given instance of 1 and j, what subsets of the arrays A and B are modified by
the call to Sub1?

e What are the subsets of array elements accessed by a call to Sub1?

e Are there any common variables modified by a call to Sub1?

The answers to these questions should be posed as algebraic expressions in terms of
the parameters and variables external to Subl. For example, if Subl takes the form of

a C function:

T X)L et | ramiora U

jconwersaty. sel at 4 1k

on
d -‘mm 18 ot pamsis 90 52
-

Steopes
{Qu tover_12910g
s

1 t
(aD3) swve._1lé: txs
p* ~Pped —Oov

- 2
ewersstion sef at 4 13
i:'uu- 58 st piwis 03

“ {g) ievas (L2™: gD~ ~S=9 ~dovice D

Figure 7. An attempt to parallelize a loop using SIGMA

16

Subl(i,j., A, B, C,m,n)
float **A, **B, *C;
int i,j,m,n;

{
int s,t;
for(s =1i; s <= n; s = s+2){
for(t = 1; t <= m; t++){
A[j][t-i+1] = A[J](t-i+1] + B[s][t]*C([t]):
}
}
}

then the system will reply that a call to Subl modifies A[j] [1: (m-1+1)] and uses
B[1:n:2][1:m], C[1i:m] and the same subset of A as well as the scalars i, j,m,n.
Given these answers from the database, it is not hard to see how the system could decide
that, in the nested loop with the call to Subl, the outer ‘‘for s’ loop is not paralleliz-
able, but the inner “for t” loop is. In general, these are not easy questions to answer. A
more complete theory on how to compute the access structure for arrays in iterative
computations is given in {GaJG88a, GaJG88b).

In addition to answering questions about data dependences and the semantic struc-
ture of the program, the system can respond to requests to apply parallelizing transfor-
mations to the code. By using the mouse to select a segment of code in the text editor
window, the user can ask to have any of a number of standard parallelizing operations
listed in a menu applied directly to the body of the text. The system responds by observ-
ing where the text selection took place. Then it relates this line number in the source file
to the point in the data dependence graph corresponding to the selection. The data
dependence information is then used to decide if the selected transformation can be
legally applied to the code without changing the semantics of the computation. If the
answer is yes, the system generates text that corresponds to the transformed program
and directly inserts the modified code into the source text to replace the transformed
segment. For example, Figure 7 illustrates an attempt to apply parallelization transfor-
mation to the innner do loop. This parallelization is not possible because of the depen-
dences given in the edit transcript window.

Performance Evaluation

Performance evaluation represents a high-level user tool in the Faust environment.
The goal is to combine new facilities for collecting, analyzing, and visualizing perfor-
mance with the tools in Faust so that the user’s performance data is closely coupled with
additional information in the environment [GJMY88]. Other systems have also
attempted the integration of performance evaluation tools with programming environ-
ments, most notably the Carnegie Mellon’s PIE environment [SeRu85] and the IPS sys-
tem at Wisconsin-Madison [MiYa87]. In comparison with these systems, we have
focused initially on improving the quality of the performance data collected and on

17

analyzing the data to explain phenomena at all levels in a real system. Thus, our main
accomplishments in the performance evaluation area have been in the building of perfor-
mance tools. These tools, discussed below, are being integrated into the Faust environ-
ment.

Performance Data Collection

Performance measurement of parallel supercomputer systems necessitates data col-
lection tools integrated with the machine hardware, system software, compilers, and
user-level libraries. Unfortunately, consideration for performance measurement is
relegated to after the machine has been designed and built in most systems. An excep-
tion is the hardware performance monitor on the Cray X/Y-MP systems [Lars86].
Unlike Cray, however, we are taking a broader approach that provides performance
measurement services at all levels in the programmer’s environment.

Hardware Monitoring

Monitoring of hardware events must tackle the problems of event detection, trigger-
ing, combination, and storage. We have built these fundamental components of a
hardware performance monitor for capturing and analyzing hardware events [Lave89)].
Basic modules are available for probing, event detection/combination, counting, and
timing. These modules will be used to gather data about network and memory perfor-
mance on Cedar. For the Alliant FX/8 machine, we have also employed a data acquisi-
tion system for gathering data about cache performance.

System-Level Measurement

At the system level, new techniques for timing parallel and multitasking programs
on Cedar have been developed [BELM88]. Sampled-based timing approaches, used in
the Alliant Concentrix OS, were replaced by state-measured timing. This allows high—
resolution timing data to be collected for execution and nonexecution states on a per-
processing-resource basis. Process context switch tracing has also been added as part of
the system-level data collection. This has allowed accurate timing information to be
recovered from fine-grained program tracing (see performance analysis section). The
timing techniques developed here can be applied directly to other shared—~memory mul-
tiprocessor systems.

Instrumentation has also been placed in Concentrix to monitor a program’s utiliza-
tion of concurrency resources on the Alliant FX/8. The measurement is sample-based
with a snapshot of the concurrent execution state of the Alliant’s processor complex
taken at every sample period. A histogram of concurrent activity is collected over the
program'’s execution lifetime.

18

Compiler-Level Measurement

Data collection at the compiler level includes mechanisms for subroutine profiling
based on Unix GPROF techniques [GrKM82|. There are limitations of this approach for
performance measurement of parallel programs and new profiling approaches based on
tracing have been implemented (see below).

An automatic object code instrumentation tool, called LEECH, has been built to
patch a user’s program at the object code level with code for data collection; the concept
of LEECH came from work done at Encore on the Parasight tool [ArGe88a, ArGe88b).
LEECH can be regarded as a post-processor of a user's program in that it works from
an instrumentation specification describing where and how the code should be modified.
The goal of developing LEECH was to remove the need for manual source code instru-
mentation. It also allows support for certain types of instrumentation previously inac-
cessible to the Cedar Fortran compiler. In particular, LEECH is able to instrument for
concurrency instructions provided by the Alliant hardware. More generally, because of

£
£
::’r—:
£
E
=
=
;.
=
€
=
=
3

Y
h
¥

Figure 8. Processor activity graph

19

its modular design, versions of the LEECH can be easily generated for other hardware
platforms. For example, a version of LEECH has been implemented for the Sun 3/50
workstation.

User-Level Data Collection

User-level data collection libraries have been built to support counting, timing and
tracing of parallel, multitasking programs [Malo88]. These tools exist as routines and
run-time support for data capture, analysis, and storage. The counting routines count
user—define program events. The timing library interacts with the system-level timing
facility to gather time samples on a per-event basis. The tracing library supports the
tracing of program events. Each event is recorded in a processor trace buffer with a 10
microsecond timestamp of when the event occurred. The context switch tracing at the
system level allows accurate timing information to be recovered from the timestamped

T ==e FAUST ans ({1t : Litowrian Camps 1 | Detasg I o
O wtslazacion
Fresseser sctivity Pesh
vpn 8 vpn 1 vpn 2 vpn 3 Dotaiisd evovt trace
:a- 000
vpn 4 vpn S vpn 6 vpn 7 -
3 sequential v o tobal

Figure 9. Dynamic call graph

20

trace. These user-level libraries are portable to any multiprocessor systems providing
some form of timestamp generation.

Performance Interpretation/Visualization

The goal of performance interpretation/visualization is to condense the potentially
large amount of performance data into meaningful representations that elide irrelevant
details. We have developed several tools that are useful in abstracting performance
information into forms that more closely fit conceptual user models of performance
behavior.

processor activity graph: The processor activity graph shows a timeline indicating
the state of activity (active, inactive) for each processor participating in a
program’s execution (see Figure 8). The user can visibly observe from the graph
time periods where there are low levels of parallelism. For instance, the figure
shows full parallel activity between times 2500 and 2700 but low parallelism
overall. In particular, the period 3000 to 5000 has two or less processors active.

dynamic call graph: Another abstraction of program execution is the routine call
graph. We used the program event trace as an execution history from which the
currently active (parallel) paths through the call graph can be calculated at any
time during program execution. At that time, these paths are shown graphically
as a subset of the entire call graph for each active processor. Replay of program
execution shows a dynamically changing call graph reflecting routine operation
behavior. For instance, Figure 9 shows the call graph state of the same parallel
program execution as shown in the processor activity graph above at time 2652.
All processors are active, as reflected by the call graph display in each processor
window. The sequential window shows the routine in the program that invoked
the concurrent execution. The global window shows all currently active paths in
the program'’s call graph.

event display tool: A tool for graphically displaying events from multitasking pro-
grams has also been developed. The goal is to allow the user to visibly observe all
or some of the events generated by all program tasks within any time window
during program execution. Displays from several concurrent tasks can be
presented simultaneously (see Figure 10). Sequential and concurrent operation is
shown for each task by lines of processor activity. Events are shown as graphic
icons in the displays. The user can interactively select which events are to be
viewed and what graphic icons are assigned to events. Clicking on an event icon
allows more detailed information about the event to be seen. The event display
tool design draws from ideas found in the Graphical Multitasking Analysis Tool
(GMAT) from Lawrence Livermore National Laboratory [SCSS88] and from
BBN’s GIST tool for the Butterfly multijrocessor [BBNS8S].

21

IMPACT . ?_1‘: N 2 Naiaentry é
:i OB Nein_edt
Trect Dartnisisn File seventaets gl @ © ReutineA_entry
Trace File n-nnn-l-wu- :;’J O B Reutine_A_exd t
‘r:::: :!!::.: 2000 Totst tasts ¢ s EH D B Reutine B _smry
stert s o oo 19990 Clupsed Tiem ¢ 19990 g’:’: B B Routine_p_exit
' I I 3 ..ﬂ B @ Routlnef_entry
(@] r? —G0— B B Routine L adt (o
6| — ,
T s n— e mEOmO0EE :
2 re 20 &5 a0 npsaEQl
: — - B B-B-R B |
nia-8 = F{esescans
1 n - ot
" . EORREDD
0 Y = EBEERGE0
D—_a——=u—<_i—0
R gesopDoE®
ré
T PS Blivent: Leep_Watmui sait
: pa [[{T1me: 4020 ‘ -
: : f—‘ L—D—’::::x‘:;:._w_un : é
] 1 -0 — o8 — 5
nilCd = 0 e
Dm m 4400 4me 5288 S688 o0 6400 6880
0 E [STRRT jL <eece " 2oon xujrzoon W'IJ[>>»>> Jr END J :‘é~
Figure 10. Event trace time line
Integration

The above performance evaluation tools and facilities are being integrated into the
Faust environment along several lines. As mentioned earlier, the output produced by
the data collection tools will be available to the Project Manager (PM) for storage in the
hierarchical project database. Once a part of the database, the user will be able to use
the PM facilities for maintaining performance results from multiple performance experi-
ments.

LEECH will become the standard tool for program instrumentation. An interface
for specifying where and what instrumentation should be done will be developed and
made a part of Faust's support for program interaction. This interface will also make
use of the program database generated by the SIGMA editor and system compilers.

An interface to the performance analysis tools will be impleiniented that uses the
Project Manager for gaining access to performance data files i1, the project database.
Other information needed by the tools, e.g. program event ::. -criptions, will also be

22

accessible throught the database.

Finally, the performance visualization tools will be brought under the Faust
umbrella so that access to other information maintained by Faust will be available while
performance data is being viewed. Questions about source code, data and control depen-

dences, or algorithms are all inquiries a user might make when studying performance
information.

Performance Experimentation

The initial version of the Faust Programming environment supports a portable
facility for using system performance evaluation tools and the Faust project manage-
ment tools in a single, integrated data collection and experimentation environment. The
data collection phase uses the GPROF facility supplied as part of the standard

xperiment |Flots £ ~un jrelip jult
o De D »}
this 1S the +1rst taust
1 2 3 4 5 6 7 8 experiment.
‘2 - - - -»
a7 - » » »
at
sw
D O
ca
data sets
ne.exe 144
one.exe “1*
two , exe i e

Figure 11. Experiment definition in the automatic GPROF tool

23

programmer’s workbench with the Unix operating system.

To conduct an ‘‘experiment’’ using Faust, the user first uses the Project Manager
(PM). While in the P\, the user informs Faust of the location of the series of Fortran
or C source files that comprise a particular application. The location of these files may
be widely distributed as long as they can all be uniformly referenced through NFS.
Once the PM has been given the list of files, it automatically constructs an application
subproject. The subproject is a list of application components such as source files, object
files, and executable files, as well as their inherent relationships, much like the relation-
ships defined in a typical Unix makefile. However, the Faust subproject contains addi-

tional components such as symbol tables, dependence graphs, assembler files, and perfor-
mance data files in order to support the various-tools in the environment.

Once the subproject has been created, the user invokes the GPROF environment
from the main menu. The GPROF experimentation environment allows the user to
specify a series of parameters that are to be used when running the experiment. These
parameters include the algorithm or algorithms to be tested, data files on which the
algorithms are to be applied, one or more target machines, and the number of processors
to be used for each machine. Figure 11 shows an example of an experiment description
in the GPROF experimentation environment. In this example, the user is requesting
that a single program be run on two different Alliant machines. For machine “a2,” the
program will be run a total of four times — once with one processor, once with two,
once with four, and once with eight. Similarly, the application program will also be run
four times on machine ‘‘a7’’ with the same processor configurations.

Once the parameters have been defined, the experiment can be run automatically.
When the ‘“‘run’” command is issued, the GPROF tool comminucates with the Project
Manager to locate all source files necessary to build an executable module of the applica-
tion program. Once the sources are located, the Project Manager initiates the compila-
tion of the application program for each machine that will be involved in the experi-
ment. These compilations are done with the

-pg option that causes system compilers to generate executable modules that create
the GPROF information at run time.

After the executable files have been created, the Project Manager runs the desig-
nated program in the configurations specified by the user. The gmon.out files that are
created are subsequently scanned, condensed, and cataloged as a constituent component
of the applications subproject. After all executions have been performed, the user may
view the results of the experiment.

Experimental results make be reviewed in two ways; both are shown in Figure 12.
On the left of Figure 12 is a subroutine call graph that has been annotated with GPROF
data. Each node in the graph corresponds to a subroutine and has two numbers associ-
ated with it: on the left is the number of times the subroutine was called during execu-
tion, and on the right is the percentage of time the application spent in that subroutine.

The right part of Figure 12 shows a graph plotting speedup of an application versus
processors for rusults on machines a2 and a7 together with an ideal speedup. While

24

WERYCIINGN [y |

R R T TIRE o T4 CE LT A A

)
A

RS TRET

Figure 12. Experiment results from automatic GPROF tool

reviewing experimental data, the user can select the curves to be plotted on the same set
of axes. Additionally, the data can be viewed at the application level or subroutine
level.

Graphics

We have developed a high-speed, high—quality parallel ray tracing program (VRT)
targeted specifically at the visualization of scientific data. VRT supports a complete
illumination model including multiple-colored light sources, shadows, reflections, tran-
sparent surfaces, texture mapping and adaptive anti-aliasing. Special input primitives
such as meshes and scalar 3-dimensional volumes are included to directly render results
from computational fluid dynamics and other applications. Together these features are
easily combined to render surfaces of constant density in a flow field with mirrors stra-
tegically placed to allow the researcher to see several views of the field in one image.
Shadows cast on the floor provide additional three-dimensional information. The

26

transparency allows several layers of iso-surfaces to be usefully rendered in the same
image.

VRT uses an adaptive octree data structure [Glas84] to reduce the number of ray-
object intersection tests from the classical O(R*n) to O(R*log n) where n is the number
of objects in the scene and R is the number of rays generated (always greater than the
image resolution, and typically in the range of 10¥*5 to 10**7). Although the octree
reduces the effectiveness of vectorization by storing the object data in a nonlinear struc-
ture, the resulting savings in intersection tests is 20— to 200-fold in typical scenes.

Running VRT on an Alliant FX/8, we have rendered 32,768 polygons into a 512 x
512 image with 24 bits of color and with anti-aliasing in 20 minutes, plus another 20
minutes of preprocessing time. A good image with this many polygons requires extensive
anti-aliasing since each polygon is so smail. However, with this feature disabled, the
same image is produced in about 3.6 minutes. VRT realizes good concurrency with a
speedup of about 5.3 times on eight processors as compared to a single processor. The
processing time to produce an image is directly proportional to the resolution of the
image, with a 512 x 512 image taking nearly 4 times the processing time of a 256 x 256
image. With antialiasing enabled, this is reduced to just over three times, with the
smaller image requiring additional samples to produce a smoother image. There are no
standard benchmarks for ray tracing programs. However, Eric Haines [Hain87| has pro-
posed some standard databases to be used when reporting results. Using the ‘“moun-
tain”” benchmark on an Alliant FX/8, VRT renders 8,192 polygons and four glass
spheres in 11.5 minutes (512 x 512 image, no antialiasing). Haines’ conditions require
VRT to do extra work by explicitly disallowing certain optimizations such as tree depth
pruning that VRT normally applies.

Within the last year, graphics researchers have developed methods of directly view-
ing a three—dimensional volume cf scalar data. Rather than extract isovalued surfaces to
be rendered as polygons, the data is treated as a kind of fog or cloud. The data are
passed through a function which may modify values, assign them pseudocolors, or elim-
inate values outside a specified range. The function may also provide a nonlinear map-
ping of the data. The resulting values provide the "density” of a fog to be rendered
[UpKe88, DrCHS88]. The resulting image may appear confusing when viewed as a static
two—dimensional view, but often becomes very clear when a <hort animation is created
showing the cloud rotate.

VRT has been enhanced to include this type of volume visualization. This work
has advanced the state-of-the-art by including scalar volume as a primitive data type in
the ray tracer. Ours is the only rendering program (of any type) that we know of which
incorporates volumes with other primitives for display. To the user, it appears as just
another primitive. But, now we can embed polygons in the volume as part of the
rendering. For example, a realistic metal airplane wing can be embedded in a fluid flow
or a grid set into a field of electrical potential. The fog nature of the images causes an
attenuation of the image proportional to the densit: " the fog. Also, the volume can be
viewed with reflections and shadows. By placing tli« ..ige near the corner of a ‘‘room”
with mirrored walls, we can see three views at on© e front and reflections from two

26

Ny

Figure 13. Three-dimensional field of scalar data rendered by ray-tracing

side angles. Figure 13 shows a scalar field of electrical potential using these techniques.

This provides more insight in a single image, but also allows the user to see the
entire model in fewer animation frames. We are currently wrapping the program up for
distribution to other sites for production or experimental use.

Another area we have explored is that of the division of labor between a supercom-
puter and a graphics workstation. Other groups have applied distributed processing
techniques for visualizing resuits of supercomputer applications on workstations
(WCHWS87, JHHRS8|. They have generally treated the workstation as a “‘dumb’’ frame
buffer with the supercomputer reducing the model to an image, or have depended on
ultra-high-speed interfaces from the supercomputer to the workstation. In the former
cases, bandwidth is a significant issue. We look«d into this problem to try to identify an
appropriate model for bandwidth-limited distributed graphics processing. We studied
and implemented a graphics interface for a structural dynamics application running on
an Alliant FX/8. We developed a general methodology and approach to this problem,

27

and implemented the necessary tools, some of which are necessarily application program
specific. Our final report on this effort is documented in CSRD Report 859 [NeTu89).

We began to investigate data structure visualization. Initial efforts have been
applied to numerical linear algebra using color computer graphics to gain insights into
algorithm behavior. The insights were used to design more efficient numerical algo-
rithms for supercomputers. We developed MatVu for Matrix Visualization. In MatVy,
color or grey level is used to show the static structure of the matrix, while a combination
of color, highlighting, and animation is used to reveal the active portions of the matrix.
The graphics technology is quite mature, but this application of computer graphics has
not been well exploited. Dongarra and Sorenson have demonstrated MAP (Matrix
Access Patterns) which displays access patterns within a matrix. With this program
they address another aspect of visualization. MAP is a performance evaluation tool
rather than an algorithm development tool.

A new and interesting discovery from this effort is the eventual convergence of the
Jacobi iteration matrix to a preliminary block diagonal form in the presence of clustered
spectra (eigenvalues or singular values which are extremely close in value). Having
gained insight into the apparent block diagonal form using MatVu, numerical analysts
then instrumented the numerical detection of this optimal form in the one-sized Jacobi
algorithm. This numerical decoupling property insurcs not only immediate parallelism
for multiprocessor computer systems but also a significant reduction in the total number
of floating-point operations that must be performed, i.e. a lower algorithmic complexity.
For machines having a hierarchical memory architecture (e.g., Alliant FX/8, Cray 2,
CEDAR), the decoupling also yields greatly improved data locality in that the subma-
trices associated with the independent smaller-order problems may be stored and
operated upon completely within the fast local (cache) memories. A report on this
activity has been submitted as an article to IEEE Computer and appears as a CSRD
Report 826 [TuBe89|.

Restructuring Lisp Compiler (PARCEL)

We have completed the first version (1.0) of the Parcel compiler and run-time sys-
tem. This system consists of a machine-independent, parallelizing compiler for Scheme,
that produces from a sequential Scheme program a parallel object code in a machine-
independent intermediate form, and a code generator and run-time system for an Alli-
ant FX/8 running the Xylem operating system (the operating system of Cedar). The
restructuring compiler can be used in a variety of modes. Of course, it can be used in
the production of an image to be executed on the Alliant. Alternatively, the user may
produce from the compiler a restructured version of his program, rendered in a source—
level form that is a variant of Scheme, with annotations for parallelisin. This mode of
compilation might be used to assess the parallelism of an algorithm, or to anticipate the
performance of the object code produced by the coi.iiler, for example. Finally, a mode
is provided whereby the user may obtain a view ol /1. restructuring process itself. In
this mode, the compiler emits ‘‘snapshots’” of thc | .rogram as restructuring proceeds.

28

These snapshots are produced at sufficiently close intervals so that the restructuring pro-
cess is made quite apparent.

The parcel run-time system consists of a parallel stop~and-copy garbage collector,
a library of parallel recurrence solution routines, and run-time support for parallelism
introduced by the compiler, in addition to the facilities normally provided by a (sequen-
tial) lisp implementation (e.g., input—output). The system is being augmented to facili-
tate debugging and performance evaluation, and to accommodate a richer variety of
data types. As we port it to Cedar, we are experimenting with a variety of strategies for
the management of a hierarchical memory. This includes strategies for the parallel allo-
cation and deallocation of objects in the setting of a global, interleaved memory, as well
as the use of compile-time analysis for the placement of objects within cluster memory
where their lifetimes permit. We are also experimenting with various strategies for the
management of microtasks.

Debugging

All programming environments provide debugging support, either de facto via print
statements in the program being debugged, or via a set of debugging tools. Given the
complex interactions of parallel systems, parallel program debugging support is particu-
larly important. Moreover, a parallel program debugger must effictently monitor the
computation state, lest the potential advantages of parallelism be lost.

Monitoring, no matter how unobtrusive, introduces perturbations in either the
actual or the perceived partial order of computation states. In most parallel systems,
including Cedar, these perturbations can create significant changes in the program'’s final
state and can mask errors from the debugger (e.g., monitoring program execution to
detect synchronization errors may change program behavior sufficiently to mask those
errors).

Traditional, breakpoint debuggers (e.g., Unix DBX) require operating system inter-
vention both to trace variable references and to examine the program state. As a conse-
quence, most such debuggers greatly perturb application performance. For sequential
programs, this is manifest as increased execution time —— up to three orders of magni-
tude for variable tracing. In contrast, the perturbations in parallel programs include not
only increased execution time, but also changes in the execution path. The computation
requirements of most parallel programs make the increase in execution time unaccept-
able, and the nondeterministic execution makes debugging impossible.

Data dependence analysis provides the information needed to reduce debugger
intrusion to manageable levels. By identifying program source code locations where
changes to variables potentially occur, a debugger can minimize the program instrumen-
tation necessary to detect user-specified conditions. i test feasibility of this approach,
we have developed the XDBX debugger for Cedar ! «:rtran that uses data dependency
information to generate instrumentation. Althougl icbugger functionality cannot be
realized without some performance perturbations, an..iy~is shows that the perturbations

29

Souzce pisplay
A L

DwEst W
LA » MIGEWERR 60
™ EERg

smEsy,
=t) e),) AmED4
0o, ANetl)

s wmeeo.n : Plot-i. - GII0 A Tile Flose

- Gmias Latryii: 1o

Do oome

. A*® See error msg 1 below
Srdbx version of 1/1/09 11:22 (uicstdav) pretotype
initializing ... Y
esading aymbolic informatiem ..
loading symbole for ‘*int” ...
ead 1459 symbole
{m.out .dbx)etop when at @
(2) stop curgent:current whes at all:int.f:0(231
{x.out .dbx)zun 1
Wtask 1:0 1/::.-:0, task 3 y o s [
wnning: /homse/kreuse/damo/x.eut. as task :
. kk':'?o stopped at int.f:8 o0) 0 yle cse jebecrive
task 3:0)display i_srreyil:l Larraycss o
{task 3:0)“4:: -Kon.lt 2i " d Style peme File plose
(3) atop 3:0 when at ellsint.f:20(23424) tarraycl:iee)
(task 3:0)continue
! ask 3:0 atopped at int.f:20
(task 3:0)display i_srray(1:100)
(task 3:0)display i_sxreyl$5:90)
(task 3:0)continue _

X T

v
H v
e oy 4 ! s
A2 wn 0 etovdl uruing =~ e\ Gub Slwed .
Py L 0 mresng oy tor wnowr o patt J @ l.
.

Sabscript e
Sshmerips

Figure 14. Sample session with XDBX and graphical front—end

are minimal, making breakpoint debugging of parallel programs feasible.

Finally, we have developed an interface, based on X Windows, that supports
mouse-based, graphical interaction with the debugger (see Figure 14). In addition, the
interface supports the display of two-dimensional cross sections of Fortran arrays. Once
an array is displayed, it can be combined with other array displays to show the
difference between two data sets or overlaid data sets. This ability to display array cross
sections and apply simple transformations is the essence of the visualization debugging
of Section 3.

Automatic Nondeterminism Detection

We believe that automatic detection of the causes of nondeterminacy in parallel
programs would be quite helpful, since timing problems arc 1::rd to detect and isolate
with a conventional debugger. Toward this goal, work has .« done on the design of

30

software tools for detecting nondeterminism in parallel programs. We are attacking this
problem at the source language level and are focusing on Cedar Fortran, which can be
explicitly parallel, but the approach is equally applicable to other procedural languages.

The problem of detecting nondeterminacy is essentially a two-part problem. The
first part is to analyze the flow of control a program takes when it executes, in order to
build a flow graph, taking into account synchronization statements or constructs. The
second part is to examine all the arcs in the graph, searching for unsynchronized accesses
to the same variable. Such conflicting accesses constitute a race and are the cause of
nondeterminism. This part of the process (race detection) is fairly straightforward and a
number of researchers have been attacking this problem with success. The first part,
identifying and analyzing the interrelationships of various types of synchronization, both
explicit and implicit, is a much more difficult problem.

Prototype programs have been built for instrumenting Fortran programs in order to
collect trace data, and to analyze this data in order to detect races. These tools have
been shown to work on test programs that have a variety of races, but very limited types
of synchronization patterns. We also have developed algorithms for analyzing parallel
programs that use conventional post, watt, and clear synchronization primitives. That
is, given the trace of a program, we can automatically associate posts with waits in
parallel threads of the program. This lets us add synchronization arcs to the flow graph,
leading to more accurate race detection.

We are still at an early stage in the development of these tools, but the results that
we (and other researchers) have obtained are very encouraging. In order to provide
practical tools, we are working at refining the user interface, particularly the reporting
of analysis results. Also, we are planning to extend the set of synchronization primitives
that can be handled, such as semaphores, lock and unlock, advance and await, and so on.
Finally, we expect to apply similar techniques to static analysis, ideally leading to com-
pilers which do automatic nondeterminacy detection.

Automatic Compiler Synchronization Generation

Current plans call for the Cedar Fortran compiler to generate synchronization
instructions by September 1989. Software to experimentally determine the effectiveness
of the synchronization optimization scheme of Midkiff and Padua [Midk86, MiPa86,
MiPa87| is being developed, and results are expected by the second quarter. Research
continues to extend these optimizations to loop nests with nested parallelism, and to syn-
chronize cross loop dependences.

There are currently no plans to implement the synchronization scheme of Zhu and
Yew [ZhYe84, ZhYe87] for loops containing subscripted subscripts. Experiments are
being planned to determine the effectiveness of their method, and . extensions to that
method developed by Midkiff and Padua. The final decision to : ..icment will be based
largely on the outcome of those experiments.

31

Error Analysis

Our efforts in the past have been centered around the generation of a robust and
efficient pass to the Cedar Fortran preprocessor. The original purpose of this pass was
to instrument the Fortran code so that when compiled and run it produces a trace
appropriate for input to Larson’s roundoff error-analysis package. The current version,
however, is much more flexible: without any options, it converts expressions in the pro-
gram to triad form, a task useful in its own right as it simplifies various other prepro-
cessing passes. By specifying different options, it allows the instrumented program to
perform a variety of functions:

e counting floating—point operations

e error-analysis using statistical methods by introducing controlled perturbations to
operations.

° interval arithmetic

e generating a program trace of the floating—point computation that it was originally
designed to do.

The preprocessor is in a state of completion that allows it to perform the first two
functions on standard Fortran 77 programs, and the libraries with which the compiled
code must be linked to implement them have been written. We have thus started using
the preprocessor for performing statistical error analysis of numerical algorithms.

Unlike other floating—point operation count tools, our preprocessor does not disable
the vectorization within a program, and returns a report of the program’s approximate
number of vector floating—point operations.

The implementation of the remaining preprocessor functions should be completed
by July 1989.

Automatic Generation of Parallel PDE Solvers

The area of interest is to apply a symbolic algebra system as a tool for the manipu-
lation of Partial Differential Equations (PDEs) into a form suitable for numerical solu-
tion on Cedar. The intenced goal of this project is to evaluate the use of problem
specifications as a higher-level method for the generation of parallel programs, and to
provide a workstation interface to a symbolic algebra subsystem as the front-end for
editing, simplification, and code generation of the ’DEs. Preliminary work is with one-
and two-dimensional PDEs over a rectangular domain.

The symbolic algebra program is remotely exccuted on the host computer. An alge-

bra server was written as a translator for the symiholic algebra program. Routines have
been developed to interact with the remote systcri. in a uniform manner. The routines
use a variation of the Lisp s-expression as the excl format to remove binary incom-
patibilities and to allow a concise representatic: I the expression parse tree. The

current instance of this is an interface to Macsy .. configured to communicate over

32

TCP/IP to a SUN or VAX using the remote execution service. It simulates a normal
terminal session to the symbolic algebra program by using the syntax required by the
program while using a consistent parse tree representation for communication to the
client process.

PDE-Tutor, based on work done by Wirth [Wirt80], was written to interactively
specify the problem parameters. The user can specify the dimensions of the region, and
the number of divisions to use in discretizing the problem. The interface to the symbolic
algebra server is through a set of global variables defining the problem, region, boun-
dary, and initial conditions that the user had specified in PDE-Tutor. The interface
variables can then be used by several user-specified driving routines in Macsyma to pro-
cess the equations by various methods and solution techniques.

Another aspect of the project is the user interface. The user interface is evolving as
a graphical representation of the symbolic algebra server. The X Window System was
chosen as the basis for the user interface for the reasons of portability to other worksta-
tions and to allow integration into the Faust project.

The user interface allows interaction with the algebra server and the display of the
results in two—dimensional graphical form. The user interface is divided into three main
areas: input, output, and selection. Additional tools are available to view the results of
each phase in the translation process; for example, it is possible to view the coefficient
matrix used in the implicit methods. The input area is implemented as a page editor for
textual commands. These commands are then parsed into the internal representation
and sent to the algebra server.

The output area is organized as a series of browser windows. The browsers are slid-
ing windows onto the previous commands to and responses from the algebra server.
These browsers allow the user to independently scroll through the list of equations and
to interact with the equations. Commands are available to allow manipulation of the
equations in the browser windows. These are to "collapse” and "expand" subexpressions,
and to transfer selected subexpressions to the user’s input buffer.

The selection area of the PDE-Tutor has been designed to be a graphical outline of
the rectangular domain. Each subregion in the domain may be controlled by an
independent equation for the initial, boundary, and problem specifications. Selecting the
menu for a subregion will produce the selections for dealing with the equations in that
subregion.

Subroutine Librarian

A prototype of an expert system librarian was completed. Using GPSI (General
Purpose System for Inferencing), an expert system generator created by M. T. Harandi
in the Department of Computer Science, a rule hase was constructed to allow application
programmers to locate optimized routines in 11, CSRD library. This work features an
interactive textual interface that queried the .~cr for appropriate information, and also
gives the user the ability to have the system automatically ascertain certain information

33

such as matrix attributes for unknown cases.

A second prototype for on-line documentation service was developed, based on a
collaborative effort with Ames Laboratory. The system is a graphical documentation
browser, and based on the Ames SLADOC system. Ames modified SLADOC to run on
X Windows to allow this integration to take place. The second prototype features a
more intuitive graphic user interface that is extendible by the user. Additionally, the
interface allows for the retrieval of performance data to be rendered in graphical form so
that the user may gain some insight into the expected behavior of the library routine
when embedded into an application.

The database for this second prototype has been completed and is being evaluated
by the CSRD applications group. The system features a hierarchical database browser
and graphical database editor. The applications group is currently building the data-
base to reflect the current state of the CSRD numerical libraries. We expect this
librarian to be in general use by the end of the contract year.

